Fabrication, characterization, and kinetic study of vertical single-crystalline CuO nanowires on Si substrates

نویسندگان

  • Shao-Liang Cheng
  • Ming-Feng Chen
چکیده

We report here on the first study of the growth kinetics of high-yield, vertical CuO nanowires on silicon substrates produced by the process of thermal oxidation. The length of the CuO nanowires could be tuned from several to tens of micrometers by adjusting the oxidation temperature and time. The grown CuO nanowires were determined to be single-crystalline with different axial crystallographic orientations. After a series of scanning electron microscopy examinations, the average length of CuO nanowires produced at each temperature was found to follow a parabolic relationship with the oxidation time. The parabolic growth rate at different oxidation temperatures was measured. The activation energy for the growth of CuO nanowires calculated from an Arrhenius plot was found to be about 174.2 kJ/mole. In addition, the current-voltage characterization indicated that the sample with high-density CuO nanowires exhibited ohmic behavior, and its resistance was found to significantly decrease with increasing environmental temperature. The result can be attributed to an increase in the number of carriers at higher temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

Fabrication of vertically stacked single-crystalline Si nanowires using self-limiting oxidation.

A simple method for fabricating vertically stacked single-crystal silicon nanowires on standard bulk silicon wafers is presented. The process uses inductively coupled plasma (ICP) etching to create silicon fins with uneven yet controllable vertical profiles. The fins are then thermally oxidized in a self-limiting process, and the narrow regions are completely consumed to create multiple nanowir...

متن کامل

“FABRICATION AND CHARACTERIZATION OF SILICON NANOWIRES” A thesis Submitted in partial fulfilment of the requirement For the degree of Master of Science in physics

In this project work Si nanowires were fabricated on the Si substrate by aqueous method. In this aquoues method Ag is used for electroless chemical etching. The precursors those were taken are AgNO3, HF and H2O2. Si nanowires are fabricated at 550C. The samples were characterized by X-ray diffraction and scanning electron microscope. Result shows morphology of the Si nanowires by scanning elect...

متن کامل

Fabrication and photoresponse of ZnO nanowires/CuO coaxial heterojunction

The fabrication and properties of n-ZnO nanowires/p-CuO coaxial heterojunction (CH) with a photoresist (PR) blocking layer are reported. In our study, c-plane wurtzite ZnO nanowires were grown by aqueous chemical method, and monoclinic CuO (111) was then coated on the ZnO nanowires by electrochemical deposition to form CH. To improve the device performance, a PR layer was inserted between the Z...

متن کامل

Structure of Lattice Strain and effect of sol concentration on the characterization of TiO2-CuO-SiO2 nanoparticles

We report on the synthesis, morphology, chemically and structurally of TiO2-CuO-SiO2 nanostructure with different precursors molar ratio and calcined temperatures. In the present work, ternary reactive powders in the TiO2-CuO-SiO2 systems have been obtained using the sol-gel method, by the simultaneous gelation of all cations. The compounds and other ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012